Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice

Abstract
The clinical translation of cationic α-helical antimicrobial peptides (AMPs) has been hindered by structural instability, proteolytic degradation and in vivo toxicity from nonspecific membrane lysis. Although analyses of hydrophobic content and charge distribution have informed the design of synthetic AMPs with increased potency and reduced in vitro hemolysis, nonspecific membrane toxicity in vivo continues to impede AMP drug development. Here, we analyzed a 58-member library of stapled AMPs (StAMPs) based on magainin II and applied the insights from structure–function–toxicity measurements to devise an algorithm for the design of stable, protease-resistant, potent and nontoxic StAMP prototypes. We show that a lead double-stapled StAMP named Mag(i+4)1,15(A9K,B21A,N22K,S23K) can kill multidrug-resistant Gram-negative pathogens, such as colistin-resistant Acinetobacter baumannii in a mouse peritonitis–sepsis model, without observed hemolysis or renal injury in murine toxicity studies. Inputting the amino acid sequences alone, we further generated membrane-selective StAMPs of pleurocidin, CAP18 and esculentin, highlighting the generalizability of our design platform.
View Full Text




GENEMEDI
Email: [email protected]   [email protected]
Telephone: +86-21-50478399   Fax: 86-21-50478399
Privacy Policy
<