Full product list: Pet, Ruminants, Swine, Equine, Avian, Fish, Multiple Species

Livestock, poultry, and aquaculture are among the fastest growing and expanding agriculture sectors to fulfill the need of the growing population of humans. However, the growth in this sector is under the continuous increasing threats of infectious diseases worldwide. This menace is further aggravated by globalization in animal trade for various purposes. The sudden entry of an infectious disease in a new country or geographical location could lead to delayed diagnosis and rapid spread into the susceptible animal population. Hence, Animal diagnostics are critical for animal health, identifying health issues before they are otherwise able to be detected and supporting faster diagnosis and treatment planning. Diagnosis is an essential part of disease management and prevention. The importance of animal disease diagnostics laboratories is not a very recognized area of animal production but they are essential to animal health. It is important for not only animal producers, but also consumers to be aware of this resource. The application of innovative diagnostic technologies for the detection of animal pathogens at an early stage is essential in restricting the economic loss incurred due to emerging infectious animal diseases. The desirable characteristics of such diagnostic methods are easy to use, cost-effective, highly sensitive, and specific, coupled with the high-throughput detection capabilities. Genemedi provides diagnostic antibodies and antigens for the in vitro diagnosis of diseases from the pet, Cat/Feline, Dog/Canine, Rabbit, Bovines/Cattle, Ovines/Sheep, Caprine/Goat, Equine/Horse, Swine/Porcine/Pig, Avian/bird/poultry, Fish and so on.








Multiple Species

Abstract - Animal health diagnosis

Animal infectious diseases pose a continuing threat to animal health, food safety, national economy, and the environment. Zoonotic infections, also named as zoonoses, involve veterinary pathogens that are sustained in animal populations but can be transmitted to and cause disease in humans. In the event of veterinary outbreaks, it is essential to make rapid and accurate diagnosis to control and prevent the spread of diseases. Here we discuss different diagnostic methods available to identify animal diseases and zoonotic infections. Efficient diagnosis strategies are critical for controlling and eliminating animal diseases and zoonoses, further protecting and improving animal health, quality, and productivity.

1.Introduction of animal infectious disease

Animal diseases are globally important diseases and lead to huge economic losses. The emergence of animal disease infections and their worldwide distribution are predisposed by climate change, intense livestock production, illegal movements of animals and humans, regional civil wars and increasing trade.

The spread of infectious diseases has increased the risk of catastrophic animal losses. Some animal diseases can transmit from animals to humans and vice versa, termed zoonoses. Zoonoses encompass some of the most ancient communicable diseases, such as rabies and plague, as well as newly recognized emerging infections, such as hantavirus pulmonary syndrome (HPS) and severe acute respiratory syndrome (SARS). Routes of transmission of zoonosis to humans through direct contact or through food, water, or the environment, contributing to 61% of infectious organisms affecting humans [1, 2].

Zoonosis can be caused by veterinary pathogens, including bacteria, fungi, mycobacteria, parasites, viruses, and prions. The disease symptoms in humans range from mild and self-limiting to fatal [3]. Table 1 highlights some animal infectious diseases and their veterinary pathogens, in Table 2 we highlight some selected important zoonotic diseases and their veterinary pathogens

Table 1. Some animal infectious diseases and their pathogens.
Avian Avian influenzaavian influenza virusAnti-Avian Influenza Virus Nucleocapsid Protein (NP) mouse monoclonal antibody (mAb)
Anti-Avian Influenza Virus Haemagglutinin (HA) mouse monoclonal antibody (mAb)
Avian mycoplasmosisavian Mycoplasma gallisepticumAnti-Mycoplasma gallisepticum mgc2 mouse monoclonal antibody (mAb)
Anti-Mycoplasma gallisepticum mgc3 mouse monoclonal antibody (mAb)
Anti-Mycoplasma gallisepticum hemagglutinin protein encoded by pMGA1.2
(a member of the vlhA gene family) mouse monoclonal antibody (mAb)

Anti-Mycoplasma gallisepticum mg mouse monoclonal antibody (mAb)
Newcastle diseaseAvian Paramyxovirus Type 1/Newcastle Disease VirusAnti-Avian Paramyxovirus Type 1/Newcastle Disease Virus Nucleocapsid Protein (NP) mouse monoclonal antibody (mAb)
Avian infectious bronchitisAvian infectious bronchitis virusAnti-Infectious Bronchitis Virus Nucleocapsid Protein (NP) mouse monoclonal antibody (mAb)
Fever, coughs, sore throats, diarrhea, and pink eye.Fowl AdenovirusAnti-Fowl Adenovirus fiber mouse monoclonal antibody (mAb)
Infectious bursal/Gumboro diseaseInfectious bursal disease (Gumboro disease) virusAnti-Infectious Bursal Disease Virus VP3 mouse monoclonal antibody (mAb)
Anti-Infectious Bursal Disease Virus VP3 mouse monoclonal antibody (mAb)
Anti-Infectious Bursal Disease Virus VPX mouse monoclonal antibody (mAb)
Anti-Infectious Bursal Disease Virus VP2 mouse monoclonal antibody (mAb)
Fish Infectious Pancreatic Necrosis (IPN)Infectious Pancreatic Necrosis (IPN)Anti-Infectious Pancreatic Necrosis Virus VP2 mouse monoclonal antibody (mAb)
Infectious Salmon Anaemia(ISA)Salmon isavirusAnti-Salmon isavirus Haemagglutinin (HA) mouse monoclonal antibody (mAb)
Anti-Salmon isavirus Nucleocapsid Protein (NP) mouse monoclonal antibody (mAb)
Canine Canine distemper/ footpad diseaseCanine distemper virus (CDV)Mouse anti-Canine distemper virus (CDV) monoclonal antibodies
hemorrhagic enteritisCanine parvovirus (CPV)Mouse anti-Canine parvovirus (CPV) monoclonal antibodies
hepatitis,infectious tracheobronchitis, canine cough.Canine adenovirus type 2 (CAV-2,CAV-Ⅱ)Mouse anti-Canine adenovirus type 2 (CAV-2,CAV-Ⅱ) monoclonal antibodies
rabiesrabies virus (RV)Mouse anti-rabies virus (RV)monoclonal antibodies
Cat/Feline Feline panleukopenia (FP)Cat (feline) parvovirusMouse anti-Cat (feline) parvovirus monoclonal antibodies
High-density lipoprotein (HDL)Cat Serum amyloid A (SAA)Mouse anti-cat Serum amyloid A (SAA) monoclonal antibodies
Feline LeukemiaFeline Leukemia virus (FeLV)Mouse anti-Feline Leukemia virus (FeLV) monoclonal antibodies
Rabbit Rabbit Hemorrhagic FeverRabbit Hemorrhagic Fever (RHF)Mouse Anti-Rabbit Hemorrhagic Fever (RHF) Monoclonal Antibody
Swine Encephalitis lethargica, sleeping sickness, sleepy sicknessEpidemic EncephalitisMouse anti-Epidemic Encephalitis monoclonal antibodies
speechless, motionlessporcine blue ear virusMouse anti-porcine blue ear virus monoclonal antibodies
post-weaning multisystemic wasting syndrome (PMWS)porcine parvovirusMouse anti-porcine parvovirus monoclonal antibodies
Foot and mouth disease foot and mouth disease (FMD virus, type O, Asian)Mouse anti-foot and mouth disease (FMD virus, type O, Asian) monoclonal antibodies
Ruminants Caprine arthritis encephalitis (CAE) Sheep Caprine arthritis-encephalitis(CAE), Maedi-visna Virus Mouse anti-Sheep Caprine arthritis-encephalitis(CAE), Maedi-visna Virus monoclonal Antibody
Brucella abortus, Brucella melitensis, Brucellosis Brucella abortus, Brucella melitensis (Brucellosis) Mouse anti-Brucella abortus, Brucella melitensis (Brucellosis) monoclonal antibody
Bovine spongiform encephalopathy (BSE) Bovine spongiform encephalopathy (BSE)/prion Mouse anti-Bovine spongiform encephalopathy (BSE) monoclonal antibody
Equine respiratory disease, abortion, neurologic disease equine herpes virus (EHV) Mouse anti-equine herpes virus (EHV) monoclonal antibody
Equine infectious anemia (EIA) Equine infectious anemia (EIA) Mouse anti-Equine infectious anemia (EIA) monoclonal antibody
Table 2. Selected important zoonotic diseases and their veterinary pathogens.
AvianAvian influenzaAvian influenza virusMouse anti-avian influenza virus monoclonal antibody
CanineRabiesRabies virus (RV)Mouse anti-rabies virus (RV)monoclonal antibodies
RuminantsBrucella abortus, Brucella melitensis, BrucellosisBrucella abortus, Brucella melitensis (Brucellosis)Mouse anti-Brucella abortus, Brucella melitensis (Brucellosis) monoclonal antibody
RuminantsBovine spongiform encephalopathy (BSE)Bovine spongiform encephalopathy (BSE)/prionMouse anti-Bovine spongiform encephalopathy (BSE) monoclonal antibody
Unknown (possibly bats)Ebola Hemorrhagic FeverEbola
Rodents, cattleMonkeypox, cowpoxOrthopoxviruses
RodentsHantavirus pulmonary
syndrome, hemorrhagic
fever with renal syndrome,
hantaviral illness
Hantaviruses, Bunyavirus
RodentsLymphocytic choriomeningitis virus, Bolivian (Machupo), Brazilian (Sabia), Argentine (Junin), African (Lassa) hemorrhagic feversArenaviruses
RodentsPlagueYersinia pestis
LivestockQ feverCoxiella burnettii
Birds, mammals, reptiles, amphibiansSalmonellosisSalmonella spp. (multiple serovars)
Wild and domestic animalsLeptospirosisLeptospira interrogans (multiple serovars)
Rabbits, hares, voles, muskrat, beaver, rodentsTularemiaFrancisella tularensis (var tularensis and palaeartica)
Livestock, wild ruminantsHemolytic uremic syndrome/E. coli infectionEscherichia coli O157:H7
BirdsPsittacosisChlamydophila psittaci
EquineGlandersBurkholderia mallei
CatsCat scratch diseaseBartonella, henselae/quintana
LivestockAnthraxBacillus anthracis
Wild and domestic animalsCryptosporidiosisCryptosporidium parvum
Wild and domestic animalsGiardiasisGiardia lambia
FelidsToxoplasmosisToxoplasma gondii
Dogs, cats, raccoonsLarval migransToxocara canis, T. cati, Baylisascaris procyonis
Dogs, cats, raccoonsCutaneous larval migransAncylostoma spp., Strongyloides spp.
Swine, rodents, wild carnivoresTrichinosisTrichinella spp.
Mammals, some birdsDermatophytosis (ringworm)Microsporum canis, Trichophyton

2. The strategies used in diagnosis of animal infectious disease for animal health

Rapid diagnosis is critical for the implementation of efficient control strategies against animal infectious and zoonotic diseases. Developing high-quality diagnostic methods and understanding animal diseases infection dynamics are important to obtain reliable diagnostic results. Here we discuss some of the most common animal disease and zoonotic disease identification methods, currently being used both in experimental and diagnostic assays.

2.1 Lateral flow assays

Lateral flow test, a simple cellulose-based device developed to detect the presence of a target analyte in a liquid sample [4]. There are two main variations of lateral flow tests: antigen-based test, using monoclonal antibodies to detect the specific viral antigens, another is antibody-based test, using viral antigen protein to measure the specific antibody level in a sample. For antigen-based test, test strips are coated with antibodies that bind to a viral protein and if the animal’s sample contains such proteins, they will bind to the antibodies, to form a colored indicator on the strip. Samples can be feces, eye mucus, whole blood, serum or plasma. For antibody-based test, test strips are coated with viral antigens that bind to antibodies and if the animal blood sample contains such antibodies, they will bind to the viral antigens, to form a colored indicator on the strip. Samples can be whole blood, serum or plasma [5].

Colloidal gold nanoparticles are the most widely adopted material to induce a color change when it comes in contact with the analyte. Based on the specific immune response of antigen and antibody, colloidal gold particles were used as one of the tracer markers. Driven by solvent chromatography, the markers had an immune response on the C/T line, and the detection results could be obtained according to the color of the T line. GICA samples can be whole blood, serum or plasma, and studies have shown that the colloidal gold reagent has a high consistency in detecting whole blood, plasma or serum [6]. The test results could be provided between 10-30 mins from sample collection.

Due to the low sensitivity of this test, it would effectively work only on symptomatic individuals and these tests could be less reliable in comparison with RT-PCR tests. However, it could be quickly performed at the point-of-care, or in community settings without the need for expensive equipment. An overview of the process for lateral flow assay is presented in Figure 1.

antigen-based Lateral flow test Picture loading failed.

antibody-based Lateral flow test Picture loading failed.

Picture loading failed.
Figure 1.  An overview on lateral flow assay for a serological test

2.2 Enzyme-Linked Immunosorbent Assays (ELISA)

Enzyme-linked immunosorbent assays (ELISAs) incorporate the sensitivity of simple enzyme assays with the specificity of antibodies, by employing antigens or antibodies coupled to an easily-assayed enzyme. As such ELISA is much more rapid method than immunoblotting to detect specific viral protein from a cell, tissue, organ, or body fluid. There are two main variations of ELISAs: antigen-capture ELISA (detecting viral proteins), involve attachment of a capture antibody to a solid matrix for the viral protein of interest, while antibody-capture ELISA measures the specific antibody level in a sample, by coating viral antigen protein on a solid surface.

There are two principles based on antigen-capture and antibody-capture ELISAs. In a general, ELISAs are considered a highly sensitive method that can detect a fairly low number of proteins at the range of picomolar to nanomolar range (10-12 to 10-9 moles per liter). ELISA method was found useful as a diagnostic tool to detect influenza viral antigen much quicker than other conventional virus detection methods [7]. In another previous study, comparison of ELISA, with conventional methods has demonstrated ELISA superiority for the rapid detection and identification of influenza A virus [8]. A simplified and standardized neutralization enzyme immunoassay (Nt-EIA) was developed to detect measles virus growth in Vero cells and to quantify measles neutralizing antibody [9].

Newer EIA formats for hepatitis C virus diagnostics have been constantly evaluated [10, 11]. As such ELISAs are being used for plethora of application both in experimental and diagnostic virology including dengue, and influenza [12-14]. On the other hand, although rapid than traditional plaque assays or TCID50, ELISA assays sometimes could be quite expensive, due to the cost of reagents used. Unfortunately, sometimes required antibodies may not be commercially developed as well. In contrast, attempts to develop antibodies in-house may be quite expensive. Additional variability may also be introduced due to high background signals generated by non-specific binding, or cross-reactivity with non-viral protein targets.

Picture loading failed.
Figure 2. A schematic representation of two principles based on antigen or antibody capture ELISA [15].

2.3 Immunofluorescence staining (IF)

The immunofluorescence staining is to detect viral antigen using virus-specific monoclonal or polyclonal antibodies fluorescent staining of viral antigens is visualized under a fluorescent microscope. Picture loading failed.
Figure 3. Immunofluorescence staining of vaccinia virus infected cell [16]. Areas of virus assembly within the cell are pink. Host and viral DNA (deoxyribonucleic acid) is blue. The host cell's DNA is contained within its nucleus (large oval). Actin protein filaments, which make up part of the cytoskeleton, are green.

2.4 Immunohistochemistry (IHC)

Immunohistochemistry is to detect viral antigen in formalin-fixed paraffin-embedded tissues using virus-specific monoclonal or polyclonal antibodies followed by an enzyme-linked secondary antibody and chemical substrate; IHC can be visualized under alight microscope.

2.5 In situ hybridization (ISH)

In situ hybridization (ISH) is to detect viral nucleic acid present in fixed tissues using a labeled complementary DNA, RNA or modified nucleic acid strand. Different with PCR approach where viral nucleic acid in a sample is amplified before detection, ISH detects viral nucleic acid that is not going through an amplification process.

2.6 Virus isolation (VI)

Obtaining the virus isolate that can efficiently grow in cell culture is critical for pathogenesis study, development of diagnostic assays, and vaccine development. However, viral culture results do not yield timely results to inform clinical management. Shell-vial tissue culture results may take 1-3 days, while traditional tissue-cell viral culture results may take 3-10 days. Due to the long incubation time, high technical requirements, and must be carried out in a level III safe biological laboratory, it is not suitable for rapid virus diagnosis during the epidemic period [17].

2.7 Electron microscopy (EM)

Electron microscopy allows direct visualization of virus particles. Two EM techniques are commonly used in diagnostic laboratories: negative-stain EM and ultrathin-section EM. Negative-stain EM for detection of virus particles in a fluid matrix; ultrathin-section EM for detection of virus particles in fixed tissues or cells. Based on characteristic morphology and size of virus particles observed under EM, viruses can be assigned to appropriate family, e.g., coronavirus-like particles were observed in some feces during initial investigation of diarrheic cases caused by porcine delta-coronavirus. Although EM cannot identify viruses to the species level, identification to the family level can still facilitate next-step testing to achieve definite diagnosis. However, EM generally is less sensitive and needs presence of sufficient amount of virus (about105–6virions per milliliter) in examined specimens. In addition, EM requires expensive equipment and highly skilled microscopist. Picture loading failed.
Figure 4. Transmission Electron Microscopy of hantavirus virions[18].

2.8 Molecular Methods

The development of molecular methods for the direct identification of a specific viral genome from the clinical sample is one of the greatest achievements of the 21st century. Polymerase chain reaction (PCR) is a technique that can in vitro amplify specific nucleic acid sequences and produce billion copies of target sequences within a few hours. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is proven technology leaders for rapid detection and molecular identification for most known human viruses [19]. Virus can be detected through real-time RT-PCR with primers against two segments of virus RNA genome. However, high mutation rates may lead to extensive changes in viral nucleic acid sequences making dedicated PCR primer use irrelevant, therefore there is high demand for the development of rapid and universal virus identification and detection technologies. Picture loading failed.
Figure 5. An overview of RT-PCR of virus detection [20].


In the recent years, importance of animal disease and their public health effects have been well recognized worldwide. Animal disease, more significantly, zoonotic disease cause human mortality and morbidity, and also affect livestock’s production, decrease availability of food and create barriers for international trade. Rapid diagnosis is critical for the implementation of efficient control strategies against animal disease and zoonotic disease. Understanding animal disease infection dynamics and collecting appropriate specimens at the appropriate time window are also important to obtain reliable diagnostic results. A number of virological and serological methods have been developed and used for animal disease diagnostic testing. RT-PCR is the method of common choice for the detection of animal disease; IHC combined with hematoxylin and eosin staining has also been commonly used to examine histopathological lesions caused by animal disease. Success rate of virus isolation in cell cultures has been low. Serological assays can provide information about previous exposure to animal disease and also determine antibody responses to infection or vaccination when vaccines are available. Rolling out serological test would be an effective strategy to determine the percentage of the population that is immune and have shown no symptoms for the animal disease. Thereby, determining the exact magnitude of the outbreak and enabling governments to assess containment strategies to slow down the spread. The major drawbacks with these immunoassays are their accuracy and sensitivity of the test results. Therefore, there needs to be extensive research and testing done to develop new cost-effective methods to quickly and easily determine animal disease infection. Whereas, any such emerging approach must be carefully evaluated for its efficiency, accuracy, and linear range. The FDA approval and evaluation of each diagnostic technique is necessary before it can be used in practice.


1. Ryu, S., et al., One Health Perspectives on Emerging Public Health Threats. J Prev Med Public Health, 2017. 50(6): p. 411-414.
2. World Health Organization (WHO). Zoonoses. Accessed October 3, 2018.; Available from:
3. Leslie MJ, M.J. Surveillance for zoonotic diseases. BLUKO97- Mikanatha 2007; Available from:
4. Available from:
5. Anylab. Available from:
6. Li, H., et al., A new and rapid approach for detecting COVID-19 based on S1 protein fragments. Clin Transl Med, 2020. 10(2): p. e90.
7. Khanna, M., et al., Evaluation of influenza virus detection by direct enzyme immunoassay (EIA) and conventional methods in asthmatic patients. J Commun Dis, 2001. 33(3): p. 163-9.
8. Waner, J.L., et al., Comparison of Directigen FLU-A with viral isolation and direct immunofluorescence for the rapid detection and identification of influenza A virus. J Clin Microbiol, 1991. 29(3): p. 479-82.
9. Cameron, J.D., A.P. Skubitz, and L.T. Furcht, Type IV collagen and corneal epithelial adhesion and migration. Effects of type IV collagen fragments and synthetic peptides on rabbit corneal epithelial cell adhesion and migration in vitro. Invest Ophthalmol Vis Sci, 1991. 32(10): p. 2766-73.
10. Kim, M.H., S.Y. Kang, and W.I. Lee, Evaluation of a new rapid test kit to detect hepatitis C virus infection. J Virol Methods, 2013. 193(2): p. 379-82.
11. Niu, X., et al., [Establishment of the evaluation reference system for domestic anti-hepatitis C virus diagnostic enzyme immunoassay kits]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2013. 29(7): p. 761-4.
12. Filice, G., et al., Sensitivity and specificity of anti-HIV ELISA employing recombinant (p24, p66, gp120) and synthetic (gp41) viral antigenic peptides. Microbiologica, 1991. 14(3): p. 185-94.
13. de Boer, G.F., W. Back, and A.D. Osterhaus, An ELISA for detection of antibodies against influenza A nucleoprotein in humans and various animal species. Arch Virol, 1990. 115(1-2): p. 47-61.
14. Cuzzubbo, A.J., et al., Comparison of PanBio dengue duo enzyme-linked immunosorbent assay (ELISA) and MRL dengue fever virus immunoglobulin M capture ELISA for diagnosis of dengue virus infections in Southeast Asia. Clin Diagn Lab Immunol, 1999. 6(5): p. 705-12.
15. Maria-C-Jimenez-Martinez. Available from:[email protected]/ELISA-assays-Direct-ELISA-mostly-used-for-antigen-detection-Indirect-ELISA-mainly-used.webp.
16. sciencephoto. Available from:
17. Uyeki, T.M., et al., Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis, 2019. 68(6): p. e1-e47.
18. Goldsmith, C. Hantavirus Life Cycle and Infection Process. Available from:
19. METHODS, M. 2013; 3:207
20. biotech, G.; Available from:

6th Floor, Buiding No.2, Kangxin Road 3377, Shanghai, China
Email: [email protected] [email protected]
Telephone: +86-21-50478399   Fax: 86-21-50478399
Privacy Policy
Chinese Website

Apply for

Sample FOC application