Human TP53BP1/53BP1/p202 ORF/cDNA clone-Adenovirus plasmid (NM_005657.4)
Cat. No.: pGMAD001255
Size: 10 µg
Concentration: generally 0.5ug/ul, usually not less than 0.3ug/ul
Leading Time: 3-7 working days
Pre-made Human TP53BP1/53BP1/p202 adenoviral expression plasmid for TP53BP1 adenovirus packaging, TP53BP1 adenovirus.
Our GM-Adenovirus vector is optimized with the GMVC-modified Adeasy adenovirus packaging system. Find more about the GMVC-modified adenovirus packaging system.
Go to
TP53BP1/53BP1 products
collection>>
(antibodies,
antigen, VLP, mRNA, ORF viral vector, etc)
Product Description
Catalog ID | pGMAD001255 |
Gene Name | TP53BP1 |
Accession Number | NM_005657.4 |
Gene ID | 7158 |
Species | Human |
Product Type | Adenovirus plasmid (overexpression) |
Insert Length | 5919 bp |
Gene Alias | 53BP1,p202,p53BP1,TDRD30 |
Fluorescent Reporter | Null |
Mammalian Cell Selection | Null |
Fusion Tag | 3xflag (C-Terminal) |
Promoter | CMV |
Resistance | Kanamycin |
ORF Nucleotide Sequence | ATGGACCCTACTGGAAGTCAGTTGGATTCAGATTTCTCTCAGCAAGATACTCCTTGCCTGATAATTGAAGATTCTCAGCCTGAAAGCCAGGTTCTAGAGGATGATTCTGGTTCTCACTTCAGTATGCTATCTCGACACCTTCCTAATCTCCAGACGCACAAAGAAAATCCTGTGTTGGATGTTGTGTCCAATCCTGAACAAACAGCTGGAGAAGAACGAGGAGACGGTAATAGTGGGTTCAATGAACATTTGAAAGAAAACAAGGTTGCAGACCCTGTGGATTCTTCTAACTTGGACACATGTGGTTCCATCAGTCAGGTCATTGAGCAGTTACCTCAGCCAAACAGGACAAGCAGTGTTCTGGGAATGTCAGTGGAATCTGCTCCTGCTGTGGAGGAAGAGAAGGGAGAAGAGTTGGAACAGAAGGAGAAAGAGAAGGAAGAAGATACTTCAGGCAATACTACACATTCCCTTGGTGCTGAAGATACTGCCTCATCACAGTTGGGTTTTGGGGTTCTGGAACTCTCCCAGAGCCAGGATGTTGAGGAAAATACTGTGCCATATGAAGTGGACAAAGAGCAGCTACAATCAGTAACCACCAACTCTGGTTATACCAGGCTGTCTGATGTGGATGCTAATACTGCAATTAAGCATGAAGAACAGTCCAACGAAGATATCCCCATAGCAGAACAGTCCAGCAAGGACATCCCTGTGACAGCACAGCCCAGTAAGGATGTACATGTTGTAAAAGAGCAAAATCCACCACCTGCAAGGTCAGAGGACATGCCTTTTAGCCCCAAAGCATCTGTTGCTGCTATGGAAGCAAAAGAACAGTTGTCTGCACAAGAACTTATGGAAAGTGGACTGCAGATTCAGAAGTCACCAGAGCCTGAGGTTTTGTCAACTCAGGAAGACTTGTTTGACCAGAGCAATAAAACAGTATCTTCTGATGGTTGCTCTACTCCTTCAAGGGAGGAAGGTGGGTGTTCTTTGGCTTCCACTCCTGCCACCACTCTGCATCTCCTGCAGCTCTCTGGTCAGAGGTCCCTTGTTCAGGACAGTCTTTCCACGAATTCTTCAGATCTTGTTGCTCCTTCTCCTGATGCTTTCCGATCTACTCCTTTTATCGTTCCTAGCAGTCCCACAGAGCAAGAAGGGAGACAAGATAAGCCAATGGACACGTCAGTGTTATCTGAAGAAGGAGGAGAGCCTTTTCAGAAGAAACTTCAAAGTGGTGAACCAGTGGAGTTAGAAAACCCCCCTCTCCTGCCTGAGTCCACTGTATCACCACAAGCCTCAACACCAATATCTCAGAGCACACCAGTCTTCCCTCCTGGGTCACTTCCTATCCCATCCCAGCCTCAGTTTTCTCATGACATTTTTATTCCTTCCCCAAGTCTGGAAGAACAATCAAATGATGGGAAGAAAGATGGAGATATGCATAGTTCATCTTTGACAGTTGAGTGTTCTAAAACTTCAGAGATTGAACCAAAGAATTCCCCTGAGGATCTTGGGCTATCTTTGACAGGGGATTCTTGCAAGTTGATGCTTTCTACAAGTGAATATAGTCAGTCCCCAAAGATGGAGAGCTTGAGTTCTCACAGAATTGATGAAGATGGAGAAAACACACAGATTGAGGATACGGAACCCATGTCTCCAGTTCTCAATTCTAAATTTGTTCCTGCTGAAAATGATAGTATCCTGATGAATCCAGCACAGGATGGTGAAGTACAACTGAGTCAGAATGATGACAAAACAAAGGGAGATGATACAGACACCAGGGATGACATTAGTATTTTAGCCACTGGTTGCAAGGGCAGAGAAGAAACGGTAGCAGAAGATGTTTGTATTGATCTCACTTGTGATTCGGGGAGTCAGGCAGTTCCGTCACCAGCTACTCGATCTGAGGCACTTTCTAGTGTGTTAGATCAGGAGGAAGCTATGGAAATTAAAGAACACCATCCAGAGGAGGGGTCTTCAGGGTCTGAGGTGGAAGAAATCCCTGAGACACCTTGTGAAAGTCAAGGAGAGGAACTCAAAGAAGAAAATATGGAGAGTGTTCCGTTGCACCTTTCTCTGACTGAAACTCAGTCCCAAGGGTTGTGTCTTCAAAAGGAAATGCCAAAAAAAGAATGCTCAGAAGCTATGGAAGTTGAAACCAGTGTGATTAGTATTGATTCCCCTCAAAAGTTGGCAATACTTGACCAAGAATTGGAACATAAGGAACAGGAAGCTTGGGAAGAAGCTACTTCAGAGGACTCCAGTGTTGTCATTGTAGATGTGAAAGAGCCATCTCCCAGAGTTGATGTTTCTTGTGAACCTTTGGAGGGAGTGGAGAAGTGCTCAGATTCCCAGTCATGGGAGGATATTGCTCCAGAAATAGAACCATGTGCTGAGAATAGATTAGACACCAAGGAAGAAAAGAGTGTAGAATATGAAGGAGATCTGAAATCAGGGACTGCAGAAACAGAACCTGTAGAGCAAGATTCTTCACAGCCTTCCTTACCTTTAGTGAGAGCAGATGATCCTTTAAGACTTGACCAGGAGTTGCAGCAGCCCCAAACTCAGGAGAAAACAAGTAATTCATTAACAGAAGACTCAAAAATGGCTAATGCAAAGCAGCTAAGCTCAGATGCAGAGGCCCAGAAGCTGGGGAAGCCCTCTGCCCATGCCTCACAAAGCTTCTGTGAAAGTTCTAGTGAAACCCCATTTCATTTCACTTTGCCTAAAGAAGGTGATATCATCCCACCATTGACTGGTGCAACCCCACCTCTTATTGGGCACCTAAAATTGGAGCCCAAGAGACACAGTACTCCTATTGGTATTAGCAACTATCCAGAAAGCACCATAGCAACCAGTGATGTCATGTCTGAAAGCATGGTGGAGACCCATGATCCCATACTTGGGAGTGGAAAAGGGGATTCTGGGGCTGCCCCAGACGTGGATGATAAATTATGTCTAAGAATGAAACTGGTTAGTCCTGAGACTGAGGCGAGTGAAGAGTCTTTGCAGTTCAACCTGGAAAAGCCTGCAACTGGTGAAAGAAAAAATGGATCTACTGCTGTTGCTGAGTCTGTTGCCAGTCCCCAGAAGACCATGTCTGTGTTGAGCTGTATCTGTGAAGCCAGGCAAGAGAATGAGGCTCGAAGTGAGGATCCCCCCACCACACCCATCAGGGGGAACTTGCTCCACTTTCCAAGTTCTCAAGGAGAAGAGGAGAAAGAAAAATTGGAGGGTGACCATACAATCAGGCAGAGTCAACAGCCTATGAAGCCCATTAGTCCTGTCAAGGACCCTGTTTCTCCTGCTTCCCAGAAGATGGTCATACAAGGGCCATCCAGTCCTCAAGGAGAGGCAATGGTGACAGATGTGCTAGAAGACCAGAAAGAAGGACGGAGTACTAATAAGGAAAATCCTAGTAAGGCCTTGATTGAAAGGCCCAGCCAAAATAACATAGGAATCCAAACCATGGAGTGTTCCTTGAGGGTCCCAGAAACTGTTTCAGCAGCAACCCAGACTATAAAGAATGTGTGTGAGCAGGGGACCAGTACAGTGGACCAGAACTTTGGAAAGCAAGATGCCACAGTTCAGACTGAGAGGGGGAGTGGTGAGAAACCAGTCAGTGCTCCTGGGGATGATACAGAGTCGCTCCATAGCCAGGGAGAAGAAGAGTTTGATATGCCTCAGCCTCCACATGGCCATGTCTTACATCGTCACATGAGAACAATCCGGGAAGTACGCACACTTGTCACTCGTGTCATTACAGATGTGTATTATGTGGATGGAACAGAAGTAGAAAGAAAAGTAACTGAGGAGACTGAAGAGCCAATTGTAGAGTGTCAGGAGTGTGAAACTGAAGTTTCCCCTTCACAGACTGGGGGCTCCTCAGGTGACCTGGGGGATATCAGCTCCTTCTCCTCCAAGGCATCCAGCTTACACCGCACATCAAGTGGGACAAGTCTCTCAGCTATGCACAGCAGTGGAAGCTCAGGGAAAGGAGCCGGACCACTCAGAGGGAAAACCAGCGGGACAGAACCCGCAGATTTTGCCTTACCCAGCTCCCGAGGAGGCCCAGGAAAACTGAGTCCTAGAAAAGGGGTCAGTCAGACAGGGACGCCAGTGTGTGAGGAGGATGGTGATGCAGGCCTTGGCATCAGACAGGGAGGGAAGGCTCCAGTCACGCCTCGTGGGCGTGGGCGAAGGGGCCGCCCACCTTCTCGGACCACTGGAACCAGAGAAACAGCTGTGCCTGGCCCCTTGGGCATAGAGGACATTTCACCTAACTTGTCACCAGATGATAAATCCTTCAGCCGTGTCGTGCCCCGAGTGCCAGACTCCACCAGACGAACAGATGTGGGTGCTGGTGCTTTGCGTCGTAGTGACTCTCCAGAAATTCCTTTCCAGGCTGCTGCTGGCCCTTCTGATGGCTTAGATGCCTCCTCTCCAGGAAATAGCTTTGTAGGGCTCCGTGTTGTAGCCAAGTGGTCATCCAATGGCTACTTTTACTCTGGGAAAATCACACGAGATGTCGGAGCTGGGAAGTATAAATTGCTCTTTGATGATGGGTACGAATGTGATGTGTTGGGCAAAGACATTCTGTTATGTGACCCCATCCCGCTGGACACTGAAGTGACGGCCCTCTCGGAGGATGAGTATTTCAGTGCAGGAGTGGTGAAAGGACATAGGAAGGAGTCTGGGGAACTGTACTACAGCATTGAAAAAGAAGGCCAAAGAAAGTGGTATAAGCGAATGGCTGTCATCCTGTCCTTGGAGCAAGGAAACAGACTGAGAGAGCAGTATGGGCTTGGCCCCTATGAAGCAGTAACACCTCTTACAAAGGCAGCAGATATCAGCTTAGACAATTTGGTGGAAGGGAAGCGGAAACGGCGCAGTAACGTCAGCTCCCCAGCCACCCCTACTGCCTCCAGTAGCAGCAGCACAACCCCTACCCGAAAGATCACAGAAAGTCCTCGTGCCTCCATGGGAGTTCTCTCAGGCAAAAGAAAACTTATCACTTCTGAAGAGGAACGGTCCCCTGCCAAGCGAGGTCGCAAGTCTGCCACAGTAAAACCTGGTGCAGTAGGGGCAGGAGAGTTTGTGAGCCCCTGTGAGAGTGGAGACAACACCGGTGAACCCTCTGCCCTGGAAGAGCAGAGAGGGCCTTTGCCTCTCAACAAGACCTTGTTTCTGGGCTACGCATTTCTCCTTACCATGGCCACAACCAGTGACAAGTTGGCCAGCCGCTCCAAACTGCCAGATGGTCCTACAGGAAGCAGTGAAGAAGAGGAGGAATTTTTGGAAATTCCTCCTTTCAACAAGCAGTATACAGAATCCCAGCTTCGAGCAGGAGCTGGCTATATCCTTGAAGATTTCAATGAAGCCCAGTGTAACACAGCTTACCAGTGTCTTCTAATTGCGGATCAGCATTGTCGAACCCGGAAGTACTTCCTGTGCCTTGCCAGTGGGATTCCTTGTGTGTCTCATGTCTGGGTCCATGATAGTTGCCATGCCAACCAGCTCCAGAACTACCGTAATTATCTGTTGCCAGCTGGGTACAGCCTTGAGGAGCAAAGAATTCTGGACTGGCAACCCCGTGAAAATCCTTTCCAGAATCTGAAGGTACTCTTGGTATCAGACCAACAGCAGAACTTCCTGGAGCTCTGGTCTGAGATCCTCATGACTGGTGGTGCAGCCTCTGTGAAGCAGCACCATTCAAGTGCCCATAACAAAGATATTGCTTTAGGGGTATTTGATGTGGTGGTGACGGACCCCTCATGCCCAGCCTCGGTGCTGAAGTGTGCTGAAGCATTGCAGCTGCCTGTGGTGTCACAAGAGTGGGTGATCCAGTGCCTCATTGTTGGGGAGAGAATTGGATTCAAGCAGCATCCAAAATATAAACACGATTATGTTTCTCACTAA |
ORF Protein Sequence | MDPTGSQLDSDFSQQDTPCLIIEDSQPESQVLEDDSGSHFSMLSRHLPNLQTHKENPVLDVVSNPEQTAGEERGDGNSGFNEHLKENKVADPVDSSNLDTCGSISQVIEQLPQPNRTSSVLGMSVESAPAVEEEKGEELEQKEKEKEEDTSGNTTHSLGAEDTASSQLGFGVLELSQSQDVEENTVPYEVDKEQLQSVTTNSGYTRLSDVDANTAIKHEEQSNEDIPIAEQSSKDIPVTAQPSKDVHVVKEQNPPPARSEDMPFSPKASVAAMEAKEQLSAQELMESGLQIQKSPEPEVLSTQEDLFDQSNKTVSSDGCSTPSREEGGCSLASTPATTLHLLQLSGQRSLVQDSLSTNSSDLVAPSPDAFRSTPFIVPSSPTEQEGRQDKPMDTSVLSEEGGEPFQKKLQSGEPVELENPPLLPESTVSPQASTPISQSTPVFPPGSLPIPSQPQFSHDIFIPSPSLEEQSNDGKKDGDMHSSSLTVECSKTSEIEPKNSPEDLGLSLTGDSCKLMLSTSEYSQSPKMESLSSHRIDEDGENTQIEDTEPMSPVLNSKFVPAENDSILMNPAQDGEVQLSQNDDKTKGDDTDTRDDISILATGCKGREETVAEDVCIDLTCDSGSQAVPSPATRSEALSSVLDQEEAMEIKEHHPEEGSSGSEVEEIPETPCESQGEELKEENMESVPLHLSLTETQSQGLCLQKEMPKKECSEAMEVETSVISIDSPQKLAILDQELEHKEQEAWEEATSEDSSVVIVDVKEPSPRVDVSCEPLEGVEKCSDSQSWEDIAPEIEPCAENRLDTKEEKSVEYEGDLKSGTAETEPVEQDSSQPSLPLVRADDPLRLDQELQQPQTQEKTSNSLTEDSKMANAKQLSSDAEAQKLGKPSAHASQSFCESSSETPFHFTLPKEGDIIPPLTGATPPLIGHLKLEPKRHSTPIGISNYPESTIATSDVMSESMVETHDPILGSGKGDSGAAPDVDDKLCLRMKLVSPETEASEESLQFNLEKPATGERKNGSTAVAESVASPQKTMSVLSCICEARQENEARSEDPPTTPIRGNLLHFPSSQGEEEKEKLEGDHTIRQSQQPMKPISPVKDPVSPASQKMVIQGPSSPQGEAMVTDVLEDQKEGRSTNKENPSKALIERPSQNNIGIQTMECSLRVPETVSAATQTIKNVCEQGTSTVDQNFGKQDATVQTERGSGEKPVSAPGDDTESLHSQGEEEFDMPQPPHGHVLHRHMRTIREVRTLVTRVITDVYYVDGTEVERKVTEETEEPIVECQECETEVSPSQTGGSSGDLGDISSFSSKASSLHRTSSGTSLSAMHSSGSSGKGAGPLRGKTSGTEPADFALPSSRGGPGKLSPRKGVSQTGTPVCEEDGDAGLGIRQGGKAPVTPRGRGRRGRPPSRTTGTRETAVPGPLGIEDISPNLSPDDKSFSRVVPRVPDSTRRTDVGAGALRRSDSPEIPFQAAAGPSDGLDASSPGNSFVGLRVVAKWSSNGYFYSGKITRDVGAGKYKLLFDDGYECDVLGKDILLCDPIPLDTEVTALSEDEYFSAGVVKGHRKESGELYYSIEKEGQRKWYKRMAVILSLEQGNRLREQYGLGPYEAVTPLTKAADISLDNLVEGKRKRRSNVSSPATPTASSSSSTTPTRKITESPRASMGVLSGKRKLITSEEERSPAKRGRKSATVKPGAVGAGEFVSPCESGDNTGEPSALEEQRGPLPLNKTLFLGYAFLLTMATTSDKLASRSKLPDGPTGSSEEEEEFLEIPPFNKQYTESQLRAGAGYILEDFNEAQCNTAYQCLLIADQHCRTRKYFLCLASGIPCVSHVWVHDSCHANQLQNYRNYLLPAGYSLEEQRILDWQPRENPFQNLKVLLVSDQQQNFLELWSEILMTGGAASVKQHHSSAHNKDIALGVFDVVVTDPSCPASVLKCAEALQLPVVSQEWVIQCLIVGERIGFKQHPKYKHDYVSH |
Reference
Data / case study
Click to get more Data / Case study about the product.
Associated products
Category | Cat No. | Products Name |
---|---|---|
Target Antibody | GM-Tg-g-T26983-Ab | Anti-TP53BP1 monoclonal antibody |
Target Antigen | GM-Tg-g-T26983-Ag | TP53BP1 protein |
ORF Viral Vector | pGMAD001255 | Human TP53BP1 Adenovirus plasmid |
ORF Viral Vector | vGMAD001255 | Human TP53BP1 Adenovirus particle |
Target information
Target ID | GM-T26983 |
Target Name | TP53BP1 |
Gene ID | 7158, 27223, 710237, 296099, 101098873, 478274, 509111, 100056322 |
Gene Symbol and Synonyms | 53BP1,m53BP1,p202,p53BP1,TDRD30,TP53BP1,Trp53bp1 |
Uniprot Accession | Q12888 |
Uniprot Entry Name | TP53B_HUMAN |
Protein Sub-location | Introcelluar Protein |
Category | Therapeutics Target |
Disease | Cancer |
Gene Ensembl | ENSG00000067369 |
Target Classification | Tumor-associated antigen (TAA) |
This gene encodes a protein that functions in the DNA double-strand break repair pathway choice, promoting non-homologous end joining (NHEJ) pathways, and limiting homologous recombination. This protein plays multiple roles in the DNA damage response, including promoting checkpoint signaling following DNA damage, acting as a scaffold for recruitment of DNA damage response proteins to damaged chromatin, and promoting NHEJ pathways by limiting end resection following a double-strand break. These roles are also important during V(D)J recombination, class switch recombination and at unprotected telomeres. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Aug 2017]
About GMVC
GMVC (GM Vector Core) is GeneMedi’s unique platform for QbD Viral vectors Processes development and manufacturing. In GMVC, our core expertise lies in the tailored production of viral vectors, including adeno-associated virus (AAV), lentivirus, and adenovirus. Our state-of-the-art facilities are equipped for scalable manufacturing, ensuring high-quality viral vector production to meet both research and therapeutic needs. Our expert team specializes in process development, leveraging innovative technology and extensive industry knowledge to provide clients with tailored solutions that exceed expectations. GMVC will be the ideal partner for scientists and healthcare professionals seeking reliable and efficient viral vector production services.